Answer:
236.87 Square Units
Step-By-Step Explanation
Consider a torus generated by the rotation of the circle about the y-axis given below.
[TeX] (x-R)^2 + y^2 = r^2, \quad R > r > 0 [/TeX]
The perimeter of its cross section is 2\pi r. When it involves the y-axis:
Its total surface area:
[TeX]S=\int_{0}^{2\pi R}2\pi r d\alpha=4\pi^2 rR[/TeX]
For a circle radius 2 centered on the x-axis at the point (5, 0).
r=2. x=5, y=0
[TeX] (x-R)^2 + y^2 = r^2[/TeX]
[TeX] (5-R)^2 + 0^2 = 2^2[/TeX]
[TeX] (5-R)^2=2^2[/TeX]
5-R=2
R=5-2=3
Therefore, the total Surface Area is:
[TeX]= 4\pi^2 rR \\=4*2*3 \pi^2 \\=24 \pi^2=236.87 [/TeX]