Answer:
25.06s
Step-by-step explanation:
Remaining part of the question.
(A large stone sphere has a mass of 8200 kg and a radius of 90 cm and floats with nearly zero friction on a thin layer of pressurized water.)
Solution:
F = 60N
r = 90cm = 0.9m
M = 8200kg
Moment of inertia for a sphere (I) = ⅖mr²
I = ⅖ * m * r²
I = ⅖ * 8200 * (0.9)²
I = 0.4 * 8200 * 0.81
I = 2656.8 kgm²
Torque (T) = Iα
but T = Fr
Equating both equations,
Iα = Fr
α = Fr / I
α = (60 * 0.9) / 2656.8
α = 0.020rad/s²
The time it will take her to rotate the sphere,
Θ = w₀t + ½αt²
Angular displacement for one revolution is 2Π rads..
θ = 2π rads
2π = 0 + ½ * 0.02 * t²
(w₀ is equal to zero since sphere is at rest)
2π = ½ * 0.02 * t²
6.284 = 0.01 t²
t² =6.284 / 0.01
t² = 628.4
t = √(628.4)
t = 25.06s