Answer:
![t_1=(5\pi)/(17) -(5\pi)/(34) \approx 0.462 s\\\\t_2=(10\pi)/(17) -(5\pi)/(34) \approx1.39s](https://img.qammunity.org/2021/formulas/physics/college/dvi6kkh95a12tnk529i6jf6pyap1avoqqr.png)
Step-by-step explanation:
No matter the coeficient of the cosine function, the function will always be zero as long as the following is true:
![cos(t)=0\\\\for\\\\t=\pi n-(\pi)/(2) ,\hspace{7}n\in Z](https://img.qammunity.org/2021/formulas/physics/college/mvhk5nqeqlgxhg7bfdlbsli13u7daw8dvu.png)
Now:
Rewrite 3.4 as:
![3.4=(17)/(5)](https://img.qammunity.org/2021/formulas/physics/college/2a1jpqkq25oa1327ccud37hnh0b182tccj.png)
So:
![(17)/(5) t= \pi n -(\pi)/(2) \\\\Hence\\\\t=(5\pi n)/(17) -(5\pi)/(34),\hspace{7}n\in Z](https://img.qammunity.org/2021/formulas/physics/college/5az3aqvzky9imsl1gam20fxl51b54yeyeh.png)
Therefore the particle crosses the x-axis (x(t)=0) :
![x(t)=4.5cos((3.4)t)=0,\hspace{10}When\\\\t=(5\pi n)/(17) -(5\pi)/(34),\hspace{7}n\in Z\\](https://img.qammunity.org/2021/formulas/physics/college/5o0snfvhttoq5jmoufc2prciczfr9uergf.png)
The first time is when n=1, so:
![t_1=(5\pi(1))/(17) -(5\pi)/(34)=(5\pi)/(17) -(5\pi)/(34) \approx 0.462 s](https://img.qammunity.org/2021/formulas/physics/college/gxjrmkx5o1nv846n69idxr01o6sdmywmc4.png)
And the second time is when n=2, so:
![t_2=(5\pi(2))/(17) -(5\pi)/(34)=(10\pi)/(17) -(5\pi)/(34) \approx1.39s](https://img.qammunity.org/2021/formulas/physics/college/6e9gviazutu5ljsnfb6kbloxyef28417n7.png)