Answer:
Therefore the age of paint is 8915.78 years.
Explanation:
Given that, the paint contain 34 % of the original carbon-14.
The exponential decay model for carbon-14 is
![A=A_0e^(-0.000121t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lgpmkqjcydlw804ey5pcyqawlrbx8ac23q.png)
A= Remaining amount of carbon.
= initial amount of carbon.
Here A= 34% of
![=(34)/(100)A_0](https://img.qammunity.org/2021/formulas/mathematics/high-school/qglgsul0q9qv5nikbwqql95pa1d2w2scs6.png)
![\therefore (34)/(100)A_0=A_0e^(-0.000121t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ly93sw2c533hknv3pvmpz4o6whwlqqzkmw.png)
![\Rightarrow (34)/(100)=e^(-0.000121t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8al2iwtbft4svs6xhsvqsyywujeiw0zv8b.png)
Taking ln both sides
![\Rightarrow ln|(34)/(100)|=ln|e^(-0.000121t)|](https://img.qammunity.org/2021/formulas/mathematics/high-school/iz5kfhza9sk6ug58h9z00vrzzhxbat7835.png)
![\Rightarrow ln|(34)/(100)|={-0.000121t](https://img.qammunity.org/2021/formulas/mathematics/high-school/6wb9k4pz3nr05rma5xbptt72f8eyt6qxfh.png)
![\Rightarrow t=(ln|(34)/(100)|)/(-0.000121)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m590qbeb6kql2nbpdnem97lvixfl4y1s9i.png)
![\Rightarrow t= 8915.78](https://img.qammunity.org/2021/formulas/mathematics/high-school/5e1ahikuuzi68bhozmuekrymy7ougbtkkx.png)
Therefore the age of paint is 8915.78 years.