Answer:
The temperature of star is 5473.87 K
Step-by-step explanation:
Given:
Energy difference
eV
The ratio of number of particle
![(N_(f) )/(N_(i) ) = (1)/(2 * 10^(6) )](https://img.qammunity.org/2021/formulas/physics/college/e6x1sqb1ng0rg7kcpoinuz7spvj4cfynhc.png)
Degeneracy ratio
![(g_(f) )/(g_(i) ) = 4](https://img.qammunity.org/2021/formulas/physics/college/npnq1ko734gsa7kmxpobvgvrfnow4n6xgp.png)
From the formula of boltzmann distribution for population levels,
![(N_(f) )/(N_(i) ) =(g_(f) )/(g_(i) ) e^{-(\Delta E)/(kT) }](https://img.qammunity.org/2021/formulas/physics/college/x7itana87wmnh1z7iehdcvmh5n2hkc9y9z.png)
Where
boltzmann constant =
![8.62 * 10^(-5) (eV)/(K)](https://img.qammunity.org/2021/formulas/physics/college/dgw9p21zfxmgmyqgn9m1zjn2y06rv56qyv.png)
![(1)/(2 * 10^(6) ) =4 e^{-(7.5 eV)/(8.62 * 10^(-5) T) }](https://img.qammunity.org/2021/formulas/physics/college/a4ta2ipcaprdvqmyfdj41xpivze1pe868k.png)
![8 * 10^(6) } = e^{(7.5 eV)/(8.62 * 10^(-5) T) }](https://img.qammunity.org/2021/formulas/physics/college/8ko4hxw8kftf7ricgoj4u4qu0gy8m209w4.png)
![\ln(8 * 10^(6)) = {(7.5 eV)/(8.62 * 10^(-5) T) }](https://img.qammunity.org/2021/formulas/physics/college/t6j6d5ixktvohh5nlnyfg3231x08l17qs2.png)
![T = {(7.5 eV)/(8.62 * 10^(-5) \ln(8 * 10^(6))) }](https://img.qammunity.org/2021/formulas/physics/college/rsmcxvtrrhghavprp8m80mpzp6q3n1x862.png)
K
Therefore, the temperature of star is 5473.87 K