Answer:
A = 137° a = 14 cm
B = 26° b = 9 cm
C = 17° c = 6 cm
Explanation:
Cosine rule
![c^2=a^2+b^2-2ab\cos (C)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s9v4uxvapdeg3osrl467l6lqmru01kuv12.png)
![\implies C=\cos^(-1)\left((c^2-a^2-b^2)/(-2ab)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5lg2viivsuz3vxi8yfnuoi468kfuf5mpcd.png)
where:
- c is the side opposite angle C
- a and b are the sides with C as the included angle.
Given:
- a = 14 cm
- b = 9 cm
- c = 6 cm
![\implies C=\cos^(-1)\left((6^2-14^2-9^2)/(-2(14)(9))\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ra5es7yyerrbizzqcwnim6wlb833ncrcjm.png)
![\implies C=\cos^(-1)\left((241)/(252)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9vtc43lnpjnbpjx2n1hfzvcz0gs7e13xg2.png)
![\implies C=16.99128694..\textdegree](https://img.qammunity.org/2023/formulas/mathematics/high-school/b3lfzzv1v06u9rdia0oz4uetpj3e7ycc0q.png)
Sine Rule
![\sf (sinA)/(a)=(sinB)/(b)=(sinC)/(c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zfzfhwy197piuuvifhdxwis14zdbziz06d.png)
(where A, B and C are the angles and a, b and c are the sides opposite the angles)
![\sf \implies (sinB)/(9)=(sin(16.991..))/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/52m7hvfkamo3irwyzp4ka8osojvf5b2l40.png)
![\sf \implies B=sin^(-1)\left((9sin(16.991..))/(6)\right)=25.99797699...\textdegree](https://img.qammunity.org/2023/formulas/mathematics/high-school/djwc1ilcsjs9w2u3avawmfo3zdn7tgivqf.png)
Sum of interior angles of a triangle = 180°
⇒ ∠A + ∠B + ∠C = 180°
⇒ ∠A = 180° - 25.997...° - 16.9912...°
⇒ ∠A = 137.0107361...°