Answer:
The sample size required is 22.
Explanation:
The random variable X can be defined as the scale readings of a lab scale.
The random variable X is normally distributed with standard deviation, σ = 0.0002 grams.
The procedure is repeated five times, i.e. the sample size is, n = 5.
The sample mean reading is,
.
The (1 - α)% confidence interval for the population mean is:
![CI=\bar x\pm z_(\alpha/2)* (\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/a90shf1osezp1jji52b6mxztta4v2itkbe.png)
The margin of error of this interval is:
![MOE=z_(\alpha/2)* (\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/rmgm6mck63m1wb4qknuks7j84fkl9w9wdi.png)
The critical value of z for 98% confidence interval is:
![z_(\alpha/2)=z_(0.02/2)=z_(0.01)=2.33](https://img.qammunity.org/2021/formulas/mathematics/college/439qg10b8rav9zindsuwrxlnkeamqe8it3.png)
*Use a z-table.
Compute the sample size required to get a margin of error of 0.0001 as follows:
![MOE=z_(\alpha/2)* (\sigma)/(√(n))\\0.0001=2.33* (0.0002)/(√(n))\\n=((2.33* 0.0002)/(0.0001))^(2)\\n=21.7156\\n\approx22](https://img.qammunity.org/2021/formulas/mathematics/college/i4ncjysz7afhtpqo7lrvkj3753w2gbgd3p.png)
Thus, the sample size required is 22.