Answer:
The rotational kinetic energy is 19271.07 Joules.
Step-by-step explanation:
Given that,
Mass of the motorcycle, m = 14 kg
Angular velocity of the wheel,
![\omega=130\ rad/s](https://img.qammunity.org/2021/formulas/physics/high-school/615vzrts7ug7j13zor64g02um7f6h6s8z7.png)
Inner radius is 0.270 m,
![r_1=0.27\ m](https://img.qammunity.org/2021/formulas/physics/high-school/ycri16k0pblesba0y0s86i5w8qm9wll6e4.png)
Outer radius,
![r_2=0.3\ m](https://img.qammunity.org/2021/formulas/physics/high-school/gfjotmu1mm4m6dhg9s4yay0ua4lxz18tin.png)
The rotational kinetic energy of the wheel is given by :
![K=(1)/(2)I\omega^2](https://img.qammunity.org/2021/formulas/physics/college/ywb2u58xgfb1g5qa7ucgbazu1ag66hvf8f.png)
I is moment of inertia of the wheel,
![I=m(r_1^2+r_2^2)](https://img.qammunity.org/2021/formulas/physics/high-school/2jghzni3xh7tokvfjkgoprvhccol622ewy.png)
So,
![K=(1)/(2)m(r_1^2+r_2^2)\omega^2\\\\K=(1)/(2)* 14* ((0.27)^2+(0.3)^2)* (130)^2\\\\K=19271.07\ J](https://img.qammunity.org/2021/formulas/physics/high-school/z0328w1zd2n07kuxf9ctjycro3dxgp82ik.png)
So, the rotational kinetic energy is 19271.07 Joules.