Answer:
(a)2000 of cells were present initially.
(b)The differential equation of the given exponential model is
![(dP)/(dt)=0.3P](https://img.qammunity.org/2021/formulas/mathematics/college/yftvzywqyzw6j4hmm7kihc684d09qh6u67.png)
(c)The population will be double after 2.31 hours.
(d)The number of cell will be 8,000 after 4.62 hours.
Explanation:
Given that,
![P(t)= 2000e^(0.3 t)](https://img.qammunity.org/2021/formulas/mathematics/college/pf68eoabdygtx2fkynav6ekulfz22q411p.png)
where P(t) is number of cell and t is time in hours.
(a)
Initial time means t=0.
Putting t=0 i the given expression
![P(0)= 2000e^(0.3 * 0)](https://img.qammunity.org/2021/formulas/mathematics/college/2w9p7d0jmuh7nhi7m4nfwndesmovm7h4ge.png)
![\Rightarrow P(0)= 2000](https://img.qammunity.org/2021/formulas/mathematics/college/6c5q0r9e5yso8bew1j3s0j9q8nemr4xnmz.png)
2000 of cells were present initially.
(b)
The differential equation of population growth is
![(dP)/(dt)=kP](https://img.qammunity.org/2021/formulas/mathematics/high-school/3o5urk09b4q1ww8vcf2u3j510soj5daria.png)
The solution of the above equation is
![P(t)=Ce^(kt)](https://img.qammunity.org/2021/formulas/mathematics/college/2riyl2k51vffr0p4dayd9gfvergimcc9vg.png)
Comparing the given exponential model to the above solution
So, k= 0.3 and C=2000
The differential equation of the given exponential model is
![(dP)/(dt)=0.3P](https://img.qammunity.org/2021/formulas/mathematics/college/yftvzywqyzw6j4hmm7kihc684d09qh6u67.png)
(c)
If the population double then P(t) = 2× P(0) =2×2000
![P(t)= 2000e^(0.3 t)](https://img.qammunity.org/2021/formulas/mathematics/college/pf68eoabdygtx2fkynav6ekulfz22q411p.png)
![\Rightarrow 2* 2000=2000e^(0.3t)](https://img.qammunity.org/2021/formulas/mathematics/college/5mjwt0bqltct944y7haollgq6a5095wtfr.png)
![\Rightarrow e^(0.3t)=2](https://img.qammunity.org/2021/formulas/mathematics/college/qslc2h5kyx2uo1zb1c95zqou2soeyord1m.png)
Taking ln both sides
![\Rightarrow ln (e^(0.3t))=ln2](https://img.qammunity.org/2021/formulas/mathematics/college/upcpjo560rr9rh60662j2tfw9f7n9fzs4f.png)
![\Rightarrow {0.3t=ln2](https://img.qammunity.org/2021/formulas/mathematics/college/bpe042jh62u4y3fpols5z7ui54wk3pk2gq.png)
![\Rightarrow t=(ln2)/(0.3)](https://img.qammunity.org/2021/formulas/mathematics/college/nletplreiyikydhevyowr3jwtch28kxwsc.png)
h
The population will be double after 2.31 hours.
(d)
Now P(t)=8,000
![P(t)= 2000e^(0.3 t)](https://img.qammunity.org/2021/formulas/mathematics/college/pf68eoabdygtx2fkynav6ekulfz22q411p.png)
![\Rightarrow 8,000= 2000e^(0.3 t)](https://img.qammunity.org/2021/formulas/mathematics/college/46d5w7s4wkl18479kldipjxzinnxvuji87.png)
![\Rightarrow e^(0.3 t)=(8,000)/(2,000)](https://img.qammunity.org/2021/formulas/mathematics/college/gtt6nv68rlq50i0vgqjbm4easlva277zvg.png)
![\Rightarrow e^(0.3 t)=4](https://img.qammunity.org/2021/formulas/mathematics/college/bwf9a1wt9ima2j6geoo51zsmh8t8etoih1.png)
Taking ln function both sides
![\Rightarrow ln(e^(0.3 t))=ln 4](https://img.qammunity.org/2021/formulas/mathematics/college/8rfqqileq11p8oh2a0z8u9la4ad0t66aro.png)
![\Rightarrow t=(ln 4)/(0.3)](https://img.qammunity.org/2021/formulas/mathematics/college/73cq6j86hzb0t1a5jalxdvc6lc9d2oilvi.png)
h
The number of cell will be 8,000 after 4.62 hours.