112k views
1 vote
g(t)= -(t-1)^2 +5g(t)=−(t−1) 2 +5g, (, t, ), equals, minus, (, t, minus, 1, ), squared, plus, 5 What is the average rate of change of ggg over the interval -4\leq t\leq 5−4≤t≤5minus, 4, is less than or equal to, t, is less than or equal to, 5?

User Finomnis
by
7.8k points

1 Answer

6 votes

Answer:

Average rate of change is 1.

Explanation:

The average rate of change of function
f over the intervals
a\leqslant x\leqslant b is given by the formula,


A\left(x\right)=(f\left(b\right)-f\left(a\right))/(b-a).

Rewriting the formula according to given data,


A\left(t\right)=(g\left(b\right)-g\left(a\right))/(b-a).

Given the interval as
-4\leqslant t\leqslant 5. Hence value of a and b is a = -4 and b = 5.

Now calculate
g\left(b\right) and
g\left(a\right) as follows.

Calculation for
g\left(a\right),


g\left(t\right)=-\left(t-1\right)^2+5

Replace t as a,


g\left(a\right)=-\left(a-1\right)^2+5

Substituting the value,


g\left(-4\right)=-\left(-4-1\right)^2+5


g\left(-4\right)=-\left(-5\right)^2+5


g\left(-4\right)=-25+5


g\left(-4\right)=-20

Calculation for
g\left(b\right),


g\left(b\right)=-\left(b-1\right)^2+5

Substituting the value,


g\left(5\right)=-\left(5-1\right)^2+5


g\left(5\right)=-\left(4\right)^2+5


g\left(5\right)=-16+5


g\left(5\right)=-11

Now substituting the value,


A\left(t\right)=(-11-\left(-20\right))/(5-\left(-4\right)).

Simplifying,


A\left(t\right)=(-11+20)/(5+4).


A\left(t\right)=(9)/(9).


A\left(t\right)=1.

Hence average rate of change of the given function
g\left(t\right)=-\left(t-1\right)^2+5 over the given interval
-4\leqslant t\leqslant 5 is 1.

User Blnks
by
8.2k points