60.5k views
1 vote
For problem (1) and (2), use Gauss-Jordan reduction to transform the augmented matrix of each system to RREF. Use it to discuss the solutions of the system (i.e., no solutions, a unique solution,or infinitely many solutions).(1)2x+ 3y+z= 2x+ 9y= 12x+y+ 3z= 5

User Provash
by
6.8k points

1 Answer

3 votes

Answer:

The system has unique solution.


\therefore x=-\frac57,
y=\frac57 and
z=-(30)/(7)

Explanation:

Given system of equation is

2x+3y+z=5

2x+9y+0.z=5

12x+y+3z=5

The augmented matrix is


\left[\begin{array}{ccc}2&3&1\\2&9&0\\12&1&3\end{array}\right|\left\begin{array}{c}5\\5\\5\end{array}\right]

Subtract row 1 from row 2 (
R_2=R_2-R_1)


\left[\begin{array}{ccc}2&3&1\\0&6&-1\\12&1&3\end{array}\right|\left\begin{array}{c}5\\0\\5\end{array}\right]

subtract row 1 multiplied by 6 from row 3 (
R_3=R_3-6R_1)


\left[\begin{array}{ccc}2&3&1\\0&6&-1\\0&-17&-3\end{array}\right|\left\begin{array}{c}5\\0\\-25\end{array}\right]

Divide row 1 by 2 (
R_1=\frac{R_1}2)


\left[\begin{array}{ccc}1&\frac32&\frac12\\0&6&-1\\0&-17&-3\end{array}\right|\left\begin{array}{c}\frac52\\0\\-25\end{array}\right]

Divide row 2 by 6
(R_2=\frac{R_2}6)


\left[\begin{array}{ccc}1&\frac32&\frac12\\ \\0&1&(-1)/(6)\\ \\0&-17&-3\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\-25\end{array}\right]

Subtract row 2 multiplied by
\frac32 from row 1
(R_1=R_1-\frac32 R_2)


\left[\begin{array}{ccc}1&0&\frac34\\ \\0&1&(-1)/(6)\\ \\0&-17&-3\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\-25\end{array}\right]

Add row 2 multiplied by 17 to row 3
(R_3=R_3+17R_2)


\left[\begin{array}{ccc}1&0&\frac34\\ \\0&1&-(1)/(6)\\ \\0&0&-(35)/(6)\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\-25\end{array}\right]

Multiply row 3 by
-(6)/(35)
(R_3=-\frac6{35} R_3)


\left[\begin{array}{ccc}1&0&\frac34\\ \\0&1&-(1)/(6)\\ \\0&0&1\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\\frac{30}7\end{array}\right]

Subtract row 3 multiplied by
\frac34 from row 1
(\ R_1=R_1-\frac34R_3)


\left[\begin{array}{ccc}1&0&0\\ \\0&1&-(1)/(6)\\ \\0&0&1\end{array}\right|\left\begin{array}{c}-\frac57\\ \\0\\ \\\frac{30}7\end{array}\right]

Add row 3 multiplied by
\frac16 to row 2
(R_2=R_2+\frac16R_3)


\left[\begin{array}{ccc}1&0&0\\ \\0&1&0\\ \\0&0&1\end{array}\right|\left\begin{array}{c}-\frac57\\ \\\frac57\\ \\\frac{30}7\end{array}\right]


\therefore x=-\frac57,
y=\frac57 and
z=-(30)/(7)

Unique solution: The system has one specific solution.

The system has unique solution.

User Aneesh Kumar
by
7.9k points