60.5k views
1 vote
For problem (1) and (2), use Gauss-Jordan reduction to transform the augmented matrix of each system to RREF. Use it to discuss the solutions of the system (i.e., no solutions, a unique solution,or infinitely many solutions).(1)2x+ 3y+z= 2x+ 9y= 12x+y+ 3z= 5

User Provash
by
7.0k points

1 Answer

3 votes

Answer:

The system has unique solution.


\therefore x=-\frac57,
y=\frac57 and
z=-(30)/(7)

Explanation:

Given system of equation is

2x+3y+z=5

2x+9y+0.z=5

12x+y+3z=5

The augmented matrix is


\left[\begin{array}{ccc}2&3&1\\2&9&0\\12&1&3\end{array}\right|\left\begin{array}{c}5\\5\\5\end{array}\right]

Subtract row 1 from row 2 (
R_2=R_2-R_1)


\left[\begin{array}{ccc}2&3&1\\0&6&-1\\12&1&3\end{array}\right|\left\begin{array}{c}5\\0\\5\end{array}\right]

subtract row 1 multiplied by 6 from row 3 (
R_3=R_3-6R_1)


\left[\begin{array}{ccc}2&3&1\\0&6&-1\\0&-17&-3\end{array}\right|\left\begin{array}{c}5\\0\\-25\end{array}\right]

Divide row 1 by 2 (
R_1=\frac{R_1}2)


\left[\begin{array}{ccc}1&\frac32&\frac12\\0&6&-1\\0&-17&-3\end{array}\right|\left\begin{array}{c}\frac52\\0\\-25\end{array}\right]

Divide row 2 by 6
(R_2=\frac{R_2}6)


\left[\begin{array}{ccc}1&\frac32&\frac12\\ \\0&1&(-1)/(6)\\ \\0&-17&-3\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\-25\end{array}\right]

Subtract row 2 multiplied by
\frac32 from row 1
(R_1=R_1-\frac32 R_2)


\left[\begin{array}{ccc}1&0&\frac34\\ \\0&1&(-1)/(6)\\ \\0&-17&-3\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\-25\end{array}\right]

Add row 2 multiplied by 17 to row 3
(R_3=R_3+17R_2)


\left[\begin{array}{ccc}1&0&\frac34\\ \\0&1&-(1)/(6)\\ \\0&0&-(35)/(6)\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\-25\end{array}\right]

Multiply row 3 by
-(6)/(35)
(R_3=-\frac6{35} R_3)


\left[\begin{array}{ccc}1&0&\frac34\\ \\0&1&-(1)/(6)\\ \\0&0&1\end{array}\right|\left\begin{array}{c}\frac52\\ \\0\\ \\\frac{30}7\end{array}\right]

Subtract row 3 multiplied by
\frac34 from row 1
(\ R_1=R_1-\frac34R_3)


\left[\begin{array}{ccc}1&0&0\\ \\0&1&-(1)/(6)\\ \\0&0&1\end{array}\right|\left\begin{array}{c}-\frac57\\ \\0\\ \\\frac{30}7\end{array}\right]

Add row 3 multiplied by
\frac16 to row 2
(R_2=R_2+\frac16R_3)


\left[\begin{array}{ccc}1&0&0\\ \\0&1&0\\ \\0&0&1\end{array}\right|\left\begin{array}{c}-\frac57\\ \\\frac57\\ \\\frac{30}7\end{array}\right]


\therefore x=-\frac57,
y=\frac57 and
z=-(30)/(7)

Unique solution: The system has one specific solution.

The system has unique solution.

User Aneesh Kumar
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.