Answer:
v(t) = v(t) = -2cos(t) + t + 2
s(t) = -2sin(t) + ½t² + 2t + 3
Average value of s: 17.0 (3 sf)
Explanation:
v(t) is the integral of a(t)
v(t) = -2cos(t) + t + c
t = 0, v = 0
0 = -2 + 0 + c
c = 2
v(t) = -2cos(t) + t + 2
Displacement/position is the integral of v(t)
s(t) = -2sin(t) + ½t² + 2t + c
t = 0, s = 3
3 = 0 + 0 + 0+ c
c = 3
s(t) = -2sin(t) + ½t² + 2t + 3
Integral of s:
2cos(t) + ⅙t³ + t² + 3t + c
Average value
= 1/(b - a) × integral
= 1/(5-2) × [ (2cos(5) + ⅙(5)³ + 5² + 3(5) + c) - (2cos(2) + ⅙(2)³ + 2² + 3(2) + c) ]
= ⅓[61.4006577 - 10.50103966]
= 16.96653935