177k views
4 votes
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula below:

y2 = y1(x) ∫ [e^(−∫P(x) dx)/ y²₁(x)]dx
as instructed, to find a second solution y2(x).
y'' − 4y' + 4y = 0; y1 = e^(2x)
y2 =?

User EMko
by
5.0k points

1 Answer

1 vote

Given
y_1=e^(2x) is a fundamental solution, we posit a second solution of the form
y_2=y_1v=e^(2x)v, with derivatives


{y_2}'=e^(2x)v'+2e^(2x)v=e^(2x)(v'+2v)


{y_2}''=e^(2x)v''+4e^(2x)v'+4e^(2x)v=e^(2x)(v''+4v'+4v)

Substitute these into the ODE:


e^(2x)(v''+4v'+4v)-4e^(2x)(v'+2v)+4e^(2x)v=0\implies v''=0

Integrate both sides twice to get


v''=0\implies v'=C_1\implies v=C_1x+C_2

Then the second fundamental solution is


y_2=xe^(2x)+e^(2x)

but
y_1 already cover
e^(2x), so
y_2=xe^(2x).

User Pavel Safronov
by
5.2k points