99.9k views
2 votes
In AUVW, v = 550 inches, w = 990 inches and U=30°. Find the length of u, to the nearest inch

User BrianMiz
by
3.8k points

2 Answers

5 votes

107+w=180

w=180-107=81

second triangle

59+13=72

180-72=108

User Oren Matar
by
4.3k points
2 votes

Answer:

the answer is 583

Explanation:

\text{S.A.S.}\rightarrow \text{Law of Cosines}

S.A.S.→Law of Cosines

a^2=b^2+c^2-2bc\cos A

a

2

=b

2

+c

2

−2bccosA

From reference sheet.

u^2 = 550^2+990^2-2(550)(990)\cos 30

u

2

=550

2

+990

2

−2(550)(990)cos30

Plug in values.

u^2 = 302500+980100-2(550)(990)(0.866025)

u

2

=302500+980100−2(550)(990)(0.866025)

Square and find cosine.

u^2 = 302500+980100-943101.66472

u

2

=302500+980100−943101.66472

Multiply.

u^2 = 339498.33528

u

2

=339498.33528

Add.

u=\sqrt{339498.33528} \approx582.665 \approx583

u=

339498.33528

≈582.665≈583

User Mubarak
by
4.3k points