Given:
Image of the ellipse
To find:
The equation of the image
Solution:
The given image is a ellipse.
Center of the ellipse = (0, 0)
x-axis points are (-3, 0) and (3, 0).
y-axis points are (2, 0) and (-2, 0).
Standard form of equation of ellipse:
![$((x-h)^(2))/(a^(2))+((y-k)^(2))/(b^(2))=1](https://img.qammunity.org/2021/formulas/mathematics/college/cfk1mrds8vbuixjbpvx9f57dbj5zzix035.png)
where (h, k) is the center = (0,0)
a is the point on x-axis where y = 0. Hence a = 3.
b is the point on y-axis where x = 0. Hence b = 2.
Substitute this in the standard form of ellipse.
![$((x-0)^(2))/(3^(2))+((y-0)^(2))/(2^(2))=1](https://img.qammunity.org/2021/formulas/mathematics/college/vt88rfz17hvxhwvyugsaooebt3rjp7mdpb.png)
![$(x^(2))/(9)+(y^(2))/(4)=1](https://img.qammunity.org/2021/formulas/mathematics/college/dv0rgqn7ne7j2oighidqsrdby3doba08as.png)
To make the denominator same multiply 1st term by
and 2nd term by
.
![$(4x^(2))/(4*9)+(9y^(2))/(9*4)=1](https://img.qammunity.org/2021/formulas/mathematics/college/rwj393umkhfgd7qsn1frajz6hnc84feoed.png)
![$(4x^(2))/(36)+(9y^(2))/(36)=1](https://img.qammunity.org/2021/formulas/mathematics/college/1zs85ntptgffnxn6pif6qp7bltd8627fy9.png)
![$(4x^(2)+9y^(2))/(36)=1](https://img.qammunity.org/2021/formulas/mathematics/college/xg0i9fqcbhb4ntoxromscprkn8hpcub0o0.png)
Multiply by 36 on both sides
![$(4x^(2)+9y^(2))/(36)* 36=1* 36](https://img.qammunity.org/2021/formulas/mathematics/college/3rcvx0hz2xte6pkzq37b0kedn8k5di3eep.png)
![${4x^(2)+9y^(2)}={36}](https://img.qammunity.org/2021/formulas/mathematics/college/kduu2ihdpx9k002yrs3irfberdgfb1wd5b.png)
The equation of the image is
.