Answer:
The answer to your question is the letter B.
Explanation:
Data
Point = (-2, 10)
Center = (-2, 6)
Process
1.- Find the radius using the distance between two points
dCP =
![\sqrt{(x2 - x1)^(2)+ (y2 - y1)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/tzzinqnwy899rllihfr5g8rjc63ag3xfvv.png)
-Substitution
dCP =
![\sqrt{(-2 + 2)^(2)+ (6 - 10)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ru265yyxo9f4061un9ckxyv1utod63bqqp.png)
dCP =
![\sqrt{(0)^(2)+ (-4)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/pw33vtgpjiroftrhe1hqq7y4p35iljbv4x.png)
dCP =
![√(16)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u1n6q9c712adccao1zrepv1e1j0ef96rtv.png)
dCP = 4
2.- Write the equation of the circle
Standard equation (x - h)² + (y - k)² = r²
h = -2
k = 6
r = 4
(x + 2)² + (y - 6)² = 4²
Equation (x + 2)² + (y - 6)² = 16