Answer:
![\displaystyle y=(1)/(2)x+6](https://img.qammunity.org/2021/formulas/mathematics/college/53su5omzys1pybfl38r3rpmbqvogp1cmic.png)
![\displaystyle m=(1)/(2),\ b=6](https://img.qammunity.org/2021/formulas/mathematics/college/v80hkax70gwzabdom3o96fdzumjka73wkm.png)
Explanation:
Equation of a Line
Given two points through which a line passes, it's easy to find the equation of the line in the form
![y=mx+b](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yj5waqmoy4i54laybzhhshd88hyo5w5rj5.png)
where m is the slope, and b is the y-intercept.
We are given the graph of the line and two clearly marked points to work with: (-4,4) (4,8)
We'll use the point-point formula to build the function of the line
![\displaystyle y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/college/23qadvao41i7o4ifvkjzluiximg3ahexep.png)
Plugging in the coordinates
![\displaystyle y-4=(8-4)/(4-(-4))(x-(-4))](https://img.qammunity.org/2021/formulas/mathematics/college/n0lwyzrzrcp5srkgh77pj9zysnw9rphr4g.png)
Operating
![\displaystyle y-4=(4)/(8)(x+4)](https://img.qammunity.org/2021/formulas/mathematics/college/8zofmywo1z6mtp8ypynezl4d9euuyyemgv.png)
Simplifying
![\displaystyle y-4=(1)/(2)(x+4)](https://img.qammunity.org/2021/formulas/mathematics/college/b4yb64r2oliwr493x5h762tz8cpjly4xq1.png)
![\displaystyle y-4=(1)/(2)x+2](https://img.qammunity.org/2021/formulas/mathematics/college/kv0n1taffg2ceqnulnd2bjs9irw06mzkd7.png)
Rearranging
![\displaystyle y=(1)/(2)x+2+4](https://img.qammunity.org/2021/formulas/mathematics/college/tihgett2852k4fem1v385bl8y2tc4i3h8z.png)
![\displaystyle y=(1)/(2)x+6](https://img.qammunity.org/2021/formulas/mathematics/college/53su5omzys1pybfl38r3rpmbqvogp1cmic.png)
Here we can say
![\displaystyle m=(1)/(2),\ b=6](https://img.qammunity.org/2021/formulas/mathematics/college/v80hkax70gwzabdom3o96fdzumjka73wkm.png)