Answer: 6,-30,150,-750,3750
Explanation:
Geometric progression formula is
An=a1r^(n-1)
An= nth term
A1= first term
R= common ratio
N= nth position
A1=6
R=-5
We already know the first term,looking for 2nd 3rd 4th & 5th
A2=a1r^(n-1)
A2=6×(-5^(2-1))
A2=6×(-5^1)
A2=6×-5
A2= -30
A3=a1r^(n-1)
A3=6×(-5^(3-1))
A3=6×(-5^(2))
A3=6×(25)
A3= 150
A4=a1r^(n-1)
A4=6×(-5^(4-1))
A4=6×(-5^3)
A4=6×-125
A4= -750
A5=a1r^(n-1)
A5=6×(-5^(5-1))
A5=6×(-5^(4))
A5=6×(625)
A5=3750
The first 5 numbers are
6,-30,150,-750,3750
Answer: 6, -30, 150, -750 and 3750.
First term= 6
Second term= ar = 6×(-5)= -30
Third term= ar^2 = 6×(-5)(-5) = 150
Forth term= ar^3 = 6×(-5)^3 = -750
Fifth term= ar^4 = 6×(-5)^4 = 3750
4.6m questions
5.9m answers