Answer:
![\displaystyle V = 36 \pi](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ox3yj43zh0y3f2934plip1zc4eavhftijy.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Graphing
- Coordinates (x, y)
- Functions
- Function Notation
- Intersection Points
- Expand by FOIL
Calculus
Integrals
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/finpzh9immxz5i8n5r71nxs30z9vx92wau.png)
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2021/formulas/mathematics/college/je9vx4nu9fprre5oszklxfozykmiyr5l2m.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
Volume of Revolution Formula [y-axis]:
![\displaystyle V = \pi \int\limits^b_a {r^2} \, dy](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xobhgehubgftqq14d6x0dy25pygmoterx3.png)
Explanation:
Step 1: Define
Identify
y = 4(3 - x)
y = 0
x = 0
Step 2: Redefine
Rewrite (Revolving around y-axis)
- [Division Property of Equality] Divide 4 on both sides:
![\displaystyle (y)/(4) = 3 - x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/55yf7y2ru10qwgwsru8aaesvopo7gfyrs6.png)
- [Subtraction Property of Equality] Subtract 3 on both sides:
![\displaystyle (y)/(4) - 3 = -x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pkr2bj1yj87g54wthk0bs77nz2paqerwwk.png)
- [Division Property of Equality] Divide -1 on both sides:
![\displaystyle 3 - (y)/(4) = x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ch7xbkgmrna0kypgn33dtjpigii7f8xhmt.png)
- Rewrite:
![\displaystyle x = 3 - (y)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q9moqcra81umrxr2z2tioo2z5v3bkr2r4u.png)
Step 2: Find Bounds of Integration
See attachment
Look at y-values, right to left.
Bounds: [0, 12]
Step 3: Find Volume
- Substitute in variables [Volume of Revolution Formula]:
![\displaystyle V = \pi \int\limits^(12)_0 {(3 - (y)/(4))^2} \, dy](https://img.qammunity.org/2021/formulas/mathematics/middle-school/16sjde5npjpbhuuuukfb2auuvyp4j0c77q.png)
- [Integrand] Expand [FOIL]:
![\displaystyle V = \pi \int\limits^(12)_0 {((y^2)/(16) - (3y)/(2) + 9)} \, dy](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v8ymv4zvx0h02hwrd45ph2wbnjtimq2616.png)
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle V = \pi \bigg[ \int\limits^(12)_0 {(y^2)/(16)} \, dy - \int\limits^(12)_0 {(3y)/(2)} \, dy + \int\limits^(12)_0 {9} \, dy \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1erthbzpwbzsezmj59dy41uh7t46x4w39r.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle V = \pi \bigg[ (1)/(16) \int\limits^(12)_0 {y^2} \, dy - (3)/(2) \int\limits^(12)_0 {y} \, dy + 9 \int\limits^(12)_0 {} \, dy \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mvuxtzo72m673x1kcp044nirv3n63ecktw.png)
- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle V = \pi \bigg[ (1)/(16)((y^3)/(3)) \bigg| \limits^(12)_0 - (3)/(2)((y^2)/(2)) \bigg| \limits^(12)_0 + 9(y) \bigg| \limits^(12)_0 \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kajp0anzd7cfv5rx76g3f470ayugb0834e.png)
- [Integrals] Evaluate [Integration Rule - FTC 1]:
![\displaystyle V = \pi \bigg[ (1)/(16)(576) - (3)/(2)(72) + 9(12) \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ktu09wmtw1yyixg5646s7ke19e7479rqnm.png)
- [Brackets] Multiply:
![\displaystyle V = \pi [36 - 108 + 108]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7v9gwtvgovyhlftgi14vxs475xnpr8npq8.png)
- [Brackets] Add:
![\displaystyle V = \pi [36]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4wjx0fif22z19725677symjezg76s2keei.png)
- Multiply:
![\displaystyle V = 36 \pi](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ox3yj43zh0y3f2934plip1zc4eavhftijy.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Applications of Integration
Book: College Calculus 10e