78.1k views
2 votes
Find the volume of a solid generated by revolving the region bounded by the graphs of the equations about the y-axis. Y= 4(3-x), Y= 0, and X= 0.

1 Answer

5 votes

Answer:


\displaystyle V = 36 \pi

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Graphing
  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Intersection Points
  • Expand by FOIL

Calculus

Integrals

  • Area under the curve

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Volume of Revolution Formula [y-axis]:
\displaystyle V = \pi \int\limits^b_a {r^2} \, dy

Explanation:

Step 1: Define

Identify

y = 4(3 - x)

y = 0

x = 0

Step 2: Redefine

Rewrite (Revolving around y-axis)

  1. [Division Property of Equality] Divide 4 on both sides:
    \displaystyle (y)/(4) = 3 - x
  2. [Subtraction Property of Equality] Subtract 3 on both sides:
    \displaystyle (y)/(4) - 3 = -x
  3. [Division Property of Equality] Divide -1 on both sides:
    \displaystyle 3 - (y)/(4) = x
  4. Rewrite:
    \displaystyle x = 3 - (y)/(4)

Step 2: Find Bounds of Integration

See attachment

Look at y-values, right to left.

Bounds: [0, 12]

Step 3: Find Volume

  1. Substitute in variables [Volume of Revolution Formula]:
    \displaystyle V = \pi \int\limits^(12)_0 {(3 - (y)/(4))^2} \, dy
  2. [Integrand] Expand [FOIL]:
    \displaystyle V = \pi \int\limits^(12)_0 {((y^2)/(16) - (3y)/(2) + 9)} \, dy
  3. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle V = \pi \bigg[ \int\limits^(12)_0 {(y^2)/(16)} \, dy - \int\limits^(12)_0 {(3y)/(2)} \, dy + \int\limits^(12)_0 {9} \, dy \bigg]
  4. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle V = \pi \bigg[ (1)/(16) \int\limits^(12)_0 {y^2} \, dy - (3)/(2) \int\limits^(12)_0 {y} \, dy + 9 \int\limits^(12)_0 {} \, dy \bigg]
  5. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle V = \pi \bigg[ (1)/(16)((y^3)/(3)) \bigg| \limits^(12)_0 - (3)/(2)((y^2)/(2)) \bigg| \limits^(12)_0 + 9(y) \bigg| \limits^(12)_0 \bigg]
  6. [Integrals] Evaluate [Integration Rule - FTC 1]:
    \displaystyle V = \pi \bigg[ (1)/(16)(576) - (3)/(2)(72) + 9(12) \bigg]
  7. [Brackets] Multiply:
    \displaystyle V = \pi [36 - 108 + 108]
  8. [Brackets] Add:
    \displaystyle V = \pi [36]
  9. Multiply:
    \displaystyle V = 36 \pi

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Applications of Integration

Book: College Calculus 10e

Find the volume of a solid generated by revolving the region bounded by the graphs-example-1
User Hamid Noahdi
by
5.6k points