Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Graphing
- Coordinates (x, y)
- Functions
- Function Notation
- Intersection Points
- Expand by FOIL
Calculus
Integrals
Integration Rule [Reverse Power Rule]:

Integration Rule [Fundamental Theorem of Calculus 1]:

Integration Property [Multiplied Constant]:

Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
Volume of Revolution Formula [y-axis]:

Explanation:
Step 1: Define
Identify
y = 4(3 - x)
y = 0
x = 0
Step 2: Redefine
Rewrite (Revolving around y-axis)
- [Division Property of Equality] Divide 4 on both sides:

- [Subtraction Property of Equality] Subtract 3 on both sides:

- [Division Property of Equality] Divide -1 on both sides:

- Rewrite:

Step 2: Find Bounds of Integration
See attachment
Look at y-values, right to left.
Bounds: [0, 12]
Step 3: Find Volume
- Substitute in variables [Volume of Revolution Formula]:

- [Integrand] Expand [FOIL]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle V = \pi \bigg[ \int\limits^(12)_0 {(y^2)/(16)} \, dy - \int\limits^(12)_0 {(3y)/(2)} \, dy + \int\limits^(12)_0 {9} \, dy \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1erthbzpwbzsezmj59dy41uh7t46x4w39r.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle V = \pi \bigg[ (1)/(16) \int\limits^(12)_0 {y^2} \, dy - (3)/(2) \int\limits^(12)_0 {y} \, dy + 9 \int\limits^(12)_0 {} \, dy \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mvuxtzo72m673x1kcp044nirv3n63ecktw.png)
- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle V = \pi \bigg[ (1)/(16)((y^3)/(3)) \bigg| \limits^(12)_0 - (3)/(2)((y^2)/(2)) \bigg| \limits^(12)_0 + 9(y) \bigg| \limits^(12)_0 \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kajp0anzd7cfv5rx76g3f470ayugb0834e.png)
- [Integrals] Evaluate [Integration Rule - FTC 1]:
![\displaystyle V = \pi \bigg[ (1)/(16)(576) - (3)/(2)(72) + 9(12) \bigg]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ktu09wmtw1yyixg5646s7ke19e7479rqnm.png)
- [Brackets] Multiply:
![\displaystyle V = \pi [36 - 108 + 108]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7v9gwtvgovyhlftgi14vxs475xnpr8npq8.png)
- [Brackets] Add:
![\displaystyle V = \pi [36]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4wjx0fif22z19725677symjezg76s2keei.png)
- Multiply:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Applications of Integration
Book: College Calculus 10e