16.6k views
4 votes
Find the sum of the first 25 terms in this geometric series:
8 + 6 + 4.5...

User Karissa
by
4.4k points

2 Answers

0 votes

Answer:

it is 31.98 i did the test

Explanation:

User Rob Aston
by
4.5k points
6 votes

Explanation:

Given the geometric sequence

8 + 6 + 4.5...

A geometric sequence has a constant ratio and is defined by


a_n=a_1\cdot r^(n-1)


\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=(a_(n+1))/(a_n)


(6)/(8)=(3)/(4),\:\quad (4.5)/(6)=(3)/(4)


\mathrm{The\:ratio\:of\:all\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}


r=(3)/(4)


\mathrm{The\:first\:element\:of\:the\:sequence\:is}


a_1=8


\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:


a_n=8\left((3)/(4)\right)^(n-1)


\mathrm{Geometric\:sequence\:sum\:formula:}


a_1(1-r^n)/(1-r)


\mathrm{Plug\:in\:the\:values:}


n=25,\:\spacea_1=8,\:\spacer=(3)/(4)


=8\cdot (1-\left((3)/(4)\right)^(25))/(1-(3)/(4))


\mathrm{Multiply\:fractions}:\quad \:a\cdot (b)/(c)=(a\:\cdot \:b)/(c)


=(\left(1-\left((3)/(4)\right)^(25)\right)\cdot \:8)/(1-(3)/(4))


=(8\left(-\left((3)/(4)\right)^(25)+1\right))/((1)/(4))


\mathrm{Apply\:exponent\:rule}:\quad \left((a)/(b)\right)^c=(a^c)/(b^c)


=(8\left(-(3^(25))/(4^(25))+1\right))/((1)/(4))


\mathrm{Apply\:the\:fraction\:rule}:\quad (a)/((b)/(c))=(a\cdot \:c)/(b)


=(\left(1-(3^(25))/(4^(25))\right)\cdot \:8\cdot \:4)/(1)


\mathrm{Multiply\:the\:numbers:}\:8\cdot \:4=32


=(32\left(-(3^(25))/(4^(25))+1\right))/(1)


=(32\cdot (4^(25)-3^(25))/(4^(25)))/(1)
\mathrm{Join}\:1-(3^(25))/(4^(25)):\quad (4^(25)-3^(25))/(4^(25))


=32\cdot (4^(25)-3^(25))/(4^(25))


=(\left(4^(25)-3^(25)\right)\cdot \:32)/(4^(25))


=(2^5\left(4^(25)-3^(25)\right))/(2^(50))
\mathrm{Factor}\:32:\ 2^5,
\mathrm{Factor}\:4^(25):\ 2^(50)

so


=(4^(25)-3^(25))/(2^(45))
\mathrm{Cancel\:}(\left(4^(25)-3^(25)\right)\cdot \:2^5)/(2^(50)):\quad (4^(25)-3^(25))/(2^(45))


\mathrm{Apply\:the\:fraction\:rule}:\quad (a\pm \:b)/(c)=(a)/(c)\pm (b)/(c)


=(4^(25))/(2^(45))-(3^(25))/(2^(45))


=32-(3^(25))/(2^(45))
(4^(25))/(2^(45))=32


=32-0.024
(3^(25))/(2^(45))=0.024


=31.98

Therefore, the sum of the first 25 terms in this geometric series: 31.98

User Daniel Bonetti
by
4.7k points