213k views
3 votes
Prove that cos²(A-B)-sin²(A+B)=cos2Acos2B

1 Answer

4 votes

Answer:

see below

Explanation:

Prove : cos²(A-B)-sin²(A+B)=cos2Acos2B

LHS,

cos²(A-B) - sin²(A+B) (expand using double angle identities)

=
(1 + cos [2(A-B)])/(2) - (1 - cos [2(A+B)])/(2)

=
(1)/(2) + (1)/(2) cos[2(A-B)] - (1)/(2) + (1)/(2) cos[2(A+B)]

=
(1)/(2) cos[2(A-B)] + (1)/(2) cos[2(A+B)]

=
(1)/(2) cos(2A-2B) + (1)/(2) cos(2A+2B) (expand using sum/difference identities)

=
(1)/(2) (cos2Acos2B + sin2Asin2B ) + (1)/(2) (cos2Acos2B - sin2Asin2B )

=
(1)/(2) cos2Acos2B + (1)/(2)sin2Asin2B + (1)/(2) cos2Acos2B - (1)/(2)sin2Asin2B

=
(1)/(2) cos2Acos2B + (1)/(2) cos2Acos2B

=
cos2Acos2B (= RHS , Proven)

User Joey Dewd
by
4.3k points