Given:
ΔABC
ΔDEF
To find:
The length of median CP
Solution:
In ΔABC,
AP = 12, BP = 12 and PC = 3x - 12
In ΔDEF,
DQ = 16, QE = 16 and FQ = 2x + 8
If two triangles are similar, then their median is proportional to the corresponding sides.
![$\Rightarrow (AP)/(DQ) =(PC)/(FQ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/er9z4sdo3fq3uccpibowyv6mlq1smdrd1a.png)
![$\Rightarrow (12)/(16) =(3x-12)/(2x+8)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/94xfw8eytnxo60yd8v1up64va9l5cjo9xj.png)
Do cross multiplication.
![$\Rightarrow 12(2x+8)=16(3x-12)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7iqvdiwjr0x2e38c8bgamkj1jwc2w1dc32.png)
![$\Rightarrow 24x+96=48x-192](https://img.qammunity.org/2021/formulas/mathematics/middle-school/utowugwd5b8hlkxrkcix9w3742cqwlpf51.png)
Add 192 on both sides.
![$\Rightarrow 24x+96+192=48x-192+192](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u30ni9jnz9kvp36dy8l5ddey554degg584.png)
![$\Rightarrow 24x+288=48x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ewcvgwrnjn3fb8xsfi9rikmkoricmmx70h.png)
Subtract 24x from both sides.
![$\Rightarrow 24x+288- 24x=48x- 24x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qbm5to48pj4ga0db2i8rk4kvhogqzpi9ke.png)
![$\Rightarrow 288=24x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9ntv3xbcigo0pconmt2cztvelf96kgbw16.png)
Divide by 24 on both sides.
⇒ 12 = x
Substitute x = 12 in CP.
CP = 3(12) - 12
= 36 - 12
= 24
The length of median CP is 24.