213k views
3 votes
Determine which of (a)-(d) form a solution to the given system for any choice of the free parameter. (HINT: All parameters of a solution must cancel completely when substituted into each equation.) 3x1 + 8x2 − 14x3 = 9 x1 + 3x2 − 4x3 = 1

User Veproza
by
4.5k points

2 Answers

0 votes

Answer:

Please see attachment

Determine which of (a)-(d) form a solution to the given system for any choice of the-example-1
User Ajay B L
by
4.5k points
1 vote

Question:

The options are;

(a) (9 - 2s1, 3 + 3s1, s1)

solution

not a solution

(b) (-4 - 5s1, s1, -(3 + s1)/2)

solution

not a solution

(c) (11 + 10s1, -3 - 2s1, s1)

solution

not a solution

(d) ((6 - 4s1)/3, s1, -(7 - s1)/4)

solution

not a solution

Answer:

The options that form a solution of the given system are;

(b) and (c)

Explanation:

Here we have

3·x₁ + 8·x₂ − 14·x₃ = 9

x₁ + 3·x₂ − 4·x₃ = 1

(a) (9 - 2·s₁, 3 + 3·s₁,s₁)

3·(9 - 2·s₁) + 8·(3 + 3·s₁) − 14·s₁ = 4s₁+51

Not a solution

(b) (-4 - 5s₁, s₁, -(3 + s1)/2)

3·(-4 - 5s₁) + 8·(s₁) − 14·-(3 + s1)/2 = 9

(-4 - 5s₁) + 3·(s₁) − 4·-(3 + s1)/2 = 2

Solution

(c) (11 + 10s₁, -3 - 2s₁, s₁ )

3·(11 + 10s₁) + 8·(-3 - 2s₁) − 14·s₁ = 9

(11 + 10s₁) + 3·(-3 - 2s₁) − 4·s₁ = 2

Solution

(d) ((6 - 4s1)/3, s1, -(7 - s1)/4)

3·(6 - 4s1)/3+ 8·s1− 14·-(7 - s1)/4 = 0.5s₁ +30.5

Not a solution

User Ecabuk
by
4.4k points