Answer:
y=2sin(x+3pi/4)
Explanation:
Answer C
y = 2 sin (x + ) has the same graph of y = 2 cos (x + ) ⇒ 3rd answer
Let us revise the rules of the trigonometric compound angles
cos(x + y) = cos x cos y - sin x sin y
sin(x + y) = sin x cos y + cos x sin y
Let us solve the problem using the rules above
y = 2 cos (x + )
∵ 2 cos (x + ) = 2[cos x cos - sin x sin ]
∵ cos = and sin =
- Substitute them in the right hand side
∴ 2 cos (x + ) = 2[ cos x - sin x]
- Multiply the bracket in the right hand side by 2
∴ 2 cos (x + ) = cos x - sin x
∴ y = cos x - sin x
Now let us find the function which give the same right hand side of the function above
y = 2 sin (x + )
∵ 2 sin (x + ) = 2[sin x cos + cos x sin ]
∵ sin = and cos =
∴ 2 sin (x + ) = 2[ sin x + cos x]
∴ 2 sin (x + ) = sin x + cos x
- Switch the two terms of the right hand side
∴ 2 sin (x + ) = cos x - sin x
- The same with right hand side of the function above
∴ y = 2 sin (x + ) has the same graph of y = 2 cos (x + )
3.6m questions
4.5m answers