107k views
2 votes
Which function has the same graph as y = 2cos(x + pi/4 )?

y = 2sin(x + pi/4 )
y = 2sin(x - pi/4 )
y = 2sin(x + 3pi/4 )
y = 2sin(x - 3pi/4 )

User Skunkfrukt
by
3.1k points

2 Answers

0 votes

Answer:

y=2sin(x+3pi/4)

Explanation:

Answer C

User Pal Singh
by
3.5k points
3 votes

Answer:

y = 2 sin (x +
(3\pi )/(4) ) has the same graph of y = 2 cos (x +
(\pi )/(4) ) ⇒ 3rd answer

Explanation:

Let us revise the rules of the trigonometric compound angles

cos(x + y) = cos x cos y - sin x sin y

sin(x + y) = sin x cos y + cos x sin y

Let us solve the problem using the rules above

y = 2 cos (x +
(\pi )/(4) )

∵ 2 cos (x +
(\pi )/(4) ) = 2[cos x cos
(\pi )/(4) - sin x sin
(\pi )/(4) ]

∵ cos
(\pi )/(4) =
(√(2))/(2) and sin
(\pi )/(4) =
(√(2))/(2)

- Substitute them in the right hand side

∴ 2 cos (x +
(\pi )/(4) ) = 2[
(√(2))/(2) cos x -
(√(2))/(2) sin x]

- Multiply the bracket in the right hand side by 2

∴ 2 cos (x +
(\pi )/(4) ) =
√(2) cos x -
√(2) sin x

y =
√(2) cos x -
√(2) sin x

Now let us find the function which give the same right hand side of the function above

y = 2 sin (x +
(3\pi )/(4) )

∵ 2 sin (x +
(3\pi )/(4) ) = 2[sin x cos
(3\pi )/(4) + cos x sin
(3\pi )/(4) ]

∵ sin
(3\pi )/(4) =
(√(2))/(2) and cos
(3\pi )/(4) =
-(√(2))/(2)

- Substitute them in the right hand side

∴ 2 sin (x +
(3\pi )/(4) ) = 2[
-(√(2))/(2) sin x +
(√(2))/(2) cos x]

- Multiply the bracket in the right hand side by 2

∴ 2 sin (x +
(3\pi )/(4) ) =
-√(2) sin x +
√(2) cos x

- Switch the two terms of the right hand side

∴ 2 sin (x +
(3\pi )/(4) ) =
√(2) cos x -
√(2) sin x

y =
√(2) cos x -
√(2) sin x

- The same with right hand side of the function above

y = 2 sin (x +
(3\pi )/(4) ) has the same graph of y = 2 cos (x +
(\pi )/(4) )

User Skink
by
3.8k points