Answer:
The force supported by the pin at A is 69.081 N
Step-by-step explanation:
The diagram is in the figure attach. The angular acceleration using the moment expression is:
![-mg((Lcos\theta )/(2) )=I\alpha \\\alpha =(-3g)/(2L) cos\theta](https://img.qammunity.org/2021/formulas/physics/college/gj8f74npm3xc90o5y7debf0o4gb66jg37r.png)
Where
L = length of the bar = 900 mm = 0.9 m
![\alpha =(-3*9.8cos35)/(2*0.9) =-13.38rad/s^(2)](https://img.qammunity.org/2021/formulas/physics/college/qrzjjpoccc1b57wrch40zgro76gn91igfx.png)
The acceleration in point G is equal to:
![a_(G) =a_(A) +\alpha kr_(G/A) -w^(2) r_(G/A)](https://img.qammunity.org/2021/formulas/physics/college/jtfjmfpjtdqvg7inqt68mlhzneumjj0vzj.png)
Where
aA = acceleration at A = 0
w = angular velocity of the bar = 3 rad/s
rG/A = position vector of G respect to A =
![(L)/(2) cos\theta i-(L)/(2) cos\theta j](https://img.qammunity.org/2021/formulas/physics/college/j2wlsz6zz0ihfe14cnoadzootpems5bobc.png)
![a_(G) =((L)/(2)\alpha sin\theta -(w^(2)Lcos\theta )/(2) )i+((L)/(2)\alpha cos\theta +(w^(2)Lsin\theta )/(2) )j=((0.9*(-13.38)*sin35)/(2) -((3^(2)*0.9*cos35 )/(2) )i+((0.9*(-13.38)*cos35)/(2) +(3^(2) *0.9*sin35))/(2) )j=-6.76i-2.61jm/s^(2)](https://img.qammunity.org/2021/formulas/physics/college/ochs2q3b1d5tnmeuo7vjz9jsc33shphyqd.png)
The force at A in x is equal to:
![A_(x) =ma_(G) =7*(-6.76)=-47.32N](https://img.qammunity.org/2021/formulas/physics/college/m6q7zq3a5jbbg8wr76at4cuxlj0k1ngl6b.png)
The force at A in y is:
![A_(y) =ma_(G) +mg=(7*(-2.61))+(7*9.8)=50.33N](https://img.qammunity.org/2021/formulas/physics/college/yrf4xeitgltfdseds6ckhwjoen7kv4wnww.png)
The magnitude of force A is equal to:
![A=\sqrt{A_(x)^(2)+A_(y)^(2) } =\sqrt{(-47.32^(2))+50.33^(2) } =69.081N](https://img.qammunity.org/2021/formulas/physics/college/xu1iwfib7ko0ot2uyjxgf1gqh7o8skzzr7.png)