Answer:
![64=(2x+6)(x+3)(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lnmwk13qjwygzw0s8kb977pc1yv2ybbq83.png)
is the required equation for volume of box.
Explanation:
We are given the following in the question:
The box is
inches wide.
Width, w =
![x\text{ inches}](https://img.qammunity.org/2021/formulas/mathematics/high-school/d53l2wpgn0sdboh74p40znylxhu8u5ewa4.png)
Height of box, h =
![(x+3)\text{ inches}](https://img.qammunity.org/2021/formulas/mathematics/high-school/zsg5du2my1di76cey24pi57aezzyq0bfjv.png)
Length of box, l =
![=2* \text{Height of box}\\=2* (x+3)\\=(2x+6)\text{ inches}](https://img.qammunity.org/2021/formulas/mathematics/high-school/m5ztikjfo65ib3w7kzlhqbyi4zuxiszpt7.png)
Volume of box = 64 cubic inches
Formula:
![V = l* w* h](https://img.qammunity.org/2021/formulas/mathematics/high-school/4m772gt6vm20l6tj8okqzn0d8du6o4imc0.png)
Putting values, we get,
![V = (2x+6)(x+3)(x)\\64=(2x+6)(x+3)(x)\\64 = (2x+6)(x^2+3x)\\64 = 2x^3+6x^2+6x^2+18x)\\64 = 2x^3+12x^2+18x\\\Rightarrow 2x^3+12x^2+18x-64=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/f1iuljjscpkz093rgkciipmjmw2egsyrev.png)
is the required equation.