233k views
5 votes
The time needed to complete a final examination in a particular college course is normally distributed with a mean of 80 minutes and a standard deviation of 10 minutes. If students have only 90 minutes to complete the exam, what percentage of the class will not finish the exam in time?

User Quilby
by
5.6k points

1 Answer

2 votes

Answer:

Hence total of 10 students are not able to complete the exam.

Explanation:

Given:

Mean for completing exam =80 min

standard deviation =10 min.

To find:

how much student will not complete the exam?

Solution:

using the Z-table score we can calculate the required probability.

Z=(Required time -mean)/standard deviation.

A standard on an avg class contains:

60 students.

consider for 70 mins and then 90 mins (generally calculate ± standard deviation of mean)(80-10 and 80+10).

1)70 min

Z=(70-80)/10

Z=-1

Now corresponding p will be

P(z=-1)

=0.1587

therefore

Now for required 90 min will be

Z=(90-80)/10

=10/10

z=1

So corresponding value of p is

P(z<1)=0.8413

this means 0.8413 of 60 students are able to complete the exam.

0.8413*60

=50.47

which approximate 50 students,

total number =60

and total number student will able to complete =50

Total number of student will not complete =60-50

=10.

The time needed to complete a final examination in a particular college course is-example-1
User Dennis Smit
by
6.3k points