Answer:
the 90% of confidence intervals for the average salary of a CFA charter holder
(1,63,775 , 1,80,000)
Explanation:
Explanation:-
random sample of n = 49 recent charter holders
mean of sample (x⁻) = $172,000
standard deviation of sample( S) = $35,000
Level of significance α= 1.645
90% confidence interval


on calculation , we get
(1,63,775 , 1,80,000)
The mean value lies between the 90% of confidence intervals
(1,63,775 , 1,80,000)