Answer:
6.3 cm by 6.3 cm by 12.6cm
Explanation:
Volume of the box=
![500 cm^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/ucghrjs636lrsr806w8bvp2u0lb3zq1fnj.png)
The minimal dimensions of a box always occur when the base is a square.
![L^2H=](https://img.qammunity.org/2021/formulas/mathematics/high-school/bao8g4w729uxe6mlg0c2clr1x0xuhhaxxf.png)
![500 cm^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/ucghrjs636lrsr806w8bvp2u0lb3zq1fnj.png)
![H=(500)/(L^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/im22tpgtlpezxe16x9lemzqd9ji4uaqbmf.png)
Surface Area of a cylinder=
![2(L^2+LH+LH)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dr8virjmm104gx24gtp5cc2x10qg5ynfwd.png)
Surface Area of the sides and bottom=
![L^2+2(LH+LH)](https://img.qammunity.org/2021/formulas/mathematics/high-school/andjinipmm0ecyotkq9iee0aeuyt2so143.png)
Surface Area for the top =
![L^2](https://img.qammunity.org/2021/formulas/mathematics/college/rpfzai8pwhp8ew4tty6rkx7846lin7ak8q.png)
The material for the sides and bottom costs $0.05 per
![cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/61e8u9cfza9ghk51td2ae543e9polghsyy.png)
The material for the top costs $0.15 per
![cm^2](https://img.qammunity.org/2021/formulas/mathematics/college/61e8u9cfza9ghk51td2ae543e9polghsyy.png)
Therefore Cost of the box
![C=0.15L^2+0.05[L^2+4LH]\\C=0.2L^2+0.2LH](https://img.qammunity.org/2021/formulas/mathematics/high-school/ejv2i7l337uuwv9qaki4qg24j4s9y33842.png)
Recall:
![H=(500)/(L^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/im22tpgtlpezxe16x9lemzqd9ji4uaqbmf.png)
![C=0.2L^2+0.2L((500)/(L^2))\\=0.2L^2+(100)/(L)\\C=(0.2L^3+100)/(L)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8lzplxapr8448m9y4aqd8m9uhxwtmyvvcg.png)
The minimum value of C is at the point where the derivative is zero.
![C^(')=(2(L^3-250))/(5L^2)\\(2(L^3-250))/(5L^2)=0\\2(L^3-250)=0\\L^3=250\\L=6.3cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/8ssj6k9qbc715hjw3bc3gof48nm1birwrz.png)
![H=(500)/(L^2)=(500)/(6.3^2)=12.6cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/eu4m6tppv6ad10n6d3icoif9fobnmjyb2l.png)
The dimensions that would minimize the cost are 6.3 cm by 6.3 cm by 12.6cm