Answer:
The resulting time constant will be
.
Step-by-step explanation:
Given:
the time constant of the RC circuit,
![\tau = 8~ms](https://img.qammunity.org/2021/formulas/physics/college/axakdbgznhq22es6ztvlg92wo8dk8d62gf.png)
The value of the capacitor in the circuit,
![C_(1) = 4~\mu F](https://img.qammunity.org/2021/formulas/physics/college/pgieeyrbw8r87lhh8aptm3eiwjxcp0zbex.png)
The value of addition capacitor added to the circuit,
![C_(2) = 7~\mu F](https://img.qammunity.org/2021/formulas/physics/college/9dy06vw1cjmdyen99hf5lks61a46a8t0ks.png)
The value of the time constant for a series RC circuit is give by
![\tau = RC](https://img.qammunity.org/2021/formulas/physics/college/4p0getaq04utydyunxlzs8pae2elliuqqk.png)
So the value of the resistance in the circuit is
![R &=& (\tau)/(C)\\&=& (8 * 10^(-3)~s)/(4 * 10^-6~F)\\&=& 2000~\Omega](https://img.qammunity.org/2021/formulas/physics/college/umr03andgv6acydo3sbo0m690phc4wkkyb.png)
When the capacitor
is added to the circuit, the net value of the capacitance in the circuit is
![C &=& (C_(1)C_(2))/(C_(1) + C_(2))\\&=& (4 * 7)/(4 + 7)~\mu F\\&=& (28)/(11)~\mu F](https://img.qammunity.org/2021/formulas/physics/college/cfrllgkih32c8aut5ipikff0vgh5zm7vxa.png)
So the new time constant will be
![\tau_(n) &=& (2000~\Omega)((28)/(11) * 10^(-6))~s\\&=& 5.09~ms](https://img.qammunity.org/2021/formulas/physics/college/iffdeip9k2hmwf3whykrqax4kfapc0kz5n.png)