222k views
5 votes
A 6200 line/cm diffraction grating is 3.14 cm wide. If light with wavelengths near 624 nm falls on the grating, how close can two wavelengths be if they are to be resolved in any order

User Zsuzsa
by
5.6k points

1 Answer

0 votes

Answer:


1.6026299569* 10^(-11)\ m

Step-by-step explanation:

Grating constant


d=(1)/(6200)=0.000161\ cm=0.000161* 10^(-2)\ m

Number of slits


N=3.14* 6200=19468

Order


m=(d)/(\lambda)\\\Rightarrow m=(0.000161* 10^(-2))/(624* 10^(-9))\\\Rightarrow m\approx 2

At m = 1


\Delta\lambda=(\lambda)/(mN)\\\Rightarrow \Delta\lambda=(624* 10^(-9))/(1* 19468)\\\Rightarrow \Delta\lambda=3.2052599137* 10^(-11)\ m

At m = 2


\Delta\lambda=(\lambda)/(mN)\\\Rightarrow \Delta\lambda=(624* 10^(-9))/(2* 19468)\\\Rightarrow \Delta\lambda=1.6026299569* 10^(-11)\ m

The wavelengths can be close by
1.6026299569* 10^(-11)\ m

User Faire
by
5.3k points