Answer:
(a) So range of frequency
Hz
(b) the reactance is 89.75 Ω
Step-by-step explanation:
Given:
(a)
Capacitance of a capacitor
F
Reactance of capacitive circuit
160 Ω
From the formula of reactance,
![X_(C) = (1)/(\omega C)](https://img.qammunity.org/2021/formulas/physics/college/p267n2ubw7actyhmonn8g0kswivco07sa1.png)
![X_(C) = (1)/(2\pi fC)](https://img.qammunity.org/2021/formulas/physics/college/8qon14o5e425n2js3qax8jbavj87ty510a.png)
![f = (1)/(2\pi X_(C) C )](https://img.qammunity.org/2021/formulas/physics/college/nxfd8cch17fat0z72oecoqrefb2p1x8oyq.png)
![f = (1)/(6.28 * 160 * 23 * 10^(-6) )](https://img.qammunity.org/2021/formulas/physics/college/zh9bx2yawj1es8o9cq6if7yhxbn7c2m7lp.png)
Hz
So range of frequency
Hz
(b)
Capacitance
F
Frequency
Hz
From the formula of reactance,
![X_(C) = (1)/(2\pi fC)](https://img.qammunity.org/2021/formulas/physics/college/8qon14o5e425n2js3qax8jbavj87ty510a.png)
![X_(C) = (1)/(6.28 * 43.27 * 41 * 10^(-6) )](https://img.qammunity.org/2021/formulas/physics/college/fvskfiophv3bqht88awy1j53koyar0me5v.png)
89.75 Ω
Therefore, the reactance is 89.75 Ω