Answer:
n=438
Explanation:
-Given the sample proportion
and the confidence level is 95%.
-The sample size can be calculated using the formula;
![ME=z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/842yag1cycpsdb6xov3nb3rnx1ffuqj69g.png)
#Substitute parameters in the formula and make n the subject of the formula;
![ME=z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}\\\\=z_(0.025)\sqrt{(\hat p(1-\hat p))/(n)}\\\\n=((z_(0.025))/(ME))^2\hat p(1-\hat p)\\\\\\=((1.96)/(0.04))^2* 0.24* 0.76\\\\=437.94\approx 438](https://img.qammunity.org/2021/formulas/mathematics/high-school/zys7bcq7mf7tsmvjp8xec5v7jift9wt9xf.png)
Hence, the desired sample size is n=438