Given:
The length of arc TS = 40 in
To find:
The length of arc RS.
Solution:
Length of TS = 40 in
θ = 80°
Using arc length formula:
![$\text { Arc length }=2 \pi {r}\left((\theta)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uegxenl3ccn0tanw27bzj5ivgopv3rrhj6.png)
![$40=2 * 3.14 * {r}\left((80)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1on8yx1fcmqu9q9aoku69iuzy76btcke8o.png)
![$40=6.28 * {r}\left((2)/(9)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hlz744rm3ixoz7f0nuzel1uy0iqablv0k2.png)
![$40=1.39* r](https://img.qammunity.org/2021/formulas/mathematics/high-school/7bcuzut0ypaut96ckbxkodpwt8xq7y925u.png)
Divide by 1.39 on both sides, we get
![28.7=r](https://img.qammunity.org/2021/formulas/mathematics/high-school/w0yn6s2b3pe10vr2ecgh1sqol7iog6afaq.png)
Radius = 28.7
Complete angle of circle = 360°
Angle measure of RS = 360° - 60° - 120° - 80°
Angle measure of RS = 100°
Arc length of RS:
![$\text { Arc length }=2 \pi {r}\left((\theta)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uegxenl3ccn0tanw27bzj5ivgopv3rrhj6.png)
Substitute θ = 100° and r = 28.7
![$=2 * 3.14 * 28.7 \left((100)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vbt851imz98tybuxrmods19lfdrmjkldc6.png)
= 50 inch
The length of arc Rs is 50 inches.