Part a)
The simple random sample of size n=36 is obtained from a population with

and

The sampling distribution of the sample means has a mean that is equal to mean of the population the sample has been drawn from.
Therefore the sampling distribution has a mean of

The standard error of the means becomes the standard deviation of the sampling distribution.

Part b) We want to find

We need to convert to z-score.

Part c)
We want to find

We convert to z-score and use the normal distribution table to find the corresponding area.

Part d)
We want to find :

We convert to z-scores and again use the standard normal distribution table.
