Answer:
EX=-$1
Explanation:
Expected Value of Probability Distribution
Assume a discrete probability distribution is
![P=\{p1,p2,p3,...pn\}](https://img.qammunity.org/2021/formulas/mathematics/college/o2qd6q95hllsx9eq3wmygg65ge8ssa8j0g.png)
For
![X=\{x1,x2,x3,...xn\}](https://img.qammunity.org/2021/formulas/mathematics/college/ejsvh8z0bkue0umsc619u0nvza7xe1bcrs.png)
The expected value is
![EX=\sum x_i.p_i](https://img.qammunity.org/2021/formulas/mathematics/college/yg2492s3l6np6c6e6f97d46wcljt5dcsao.png)
We have two possible outcomes from our random experience: The sum of the die is 7 or different from 7. If it sums 7, the player wins $9, otherwise, they lose $3. Thus
![x=\{9,-3\}](https://img.qammunity.org/2021/formulas/mathematics/college/3uefdmvi0g8oql6l3yws2vecsu1ni46zh3.png)
We must find the probability of having a 7. Each dice can be a 1, 2, 3 ,4 , 5, or 6. The combinations to sum 7 are 1+6, 2+5, 3+4, 4+4, 5+2, and 6+1. That is 6 possibilities out of 36 in total. The probability of having a 7 is
![\displaystyle p_1=(6)/(36)=(1)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/dtywq450fcrc4gr82hiputf1eqozswpugh.png)
The probability of not getting 7 is the negation of the previous event
![\displaystyle p_2=1-(1)/(6)=(5)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/tsl4bajbt5uvhz9pu8fey9th7f932unnqf.png)
The probability set is:
![\displaystyle P=\left\{(1)/(6),(5)/(6)\right\}](https://img.qammunity.org/2021/formulas/mathematics/college/3h0qaxh25t4yhuseaz5gt7abecf5ibvabr.png)
The expected value is:
![\displaystyle EX=9\cdot (1)/(6)-3\cdot (5)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/irlw02if40c4hmv0tn3h061ojd5hy3m4um.png)
![\displaystyle EX=(3)/(2)-(5)/(2)=-1](https://img.qammunity.org/2021/formulas/mathematics/college/edmtd1tj1omgyf6rbh0ak6qr713pnc7ips.png)
Therefore, the player can expect to lose $1