36.0k views
0 votes
Solve each equation for 0≤x≤360
cos(x+45°)+cos(x-45°)= √2

Solve each equation for 0≤x≤360 cos(x+45°)+cos(x-45°)= √2-example-1

1 Answer

5 votes

Answer:

360°

Explanation:

We want to solve the equation,


\cos(x + 45) + \cos(x - 45) = √(2)

We expand using trigonometric identities to get;


\cos(x) \cos( 45) - \sin(x) \sin(45) + \cos(x) \cos( 45) + \sin(x) \sin(45) = √(2)


( √(2) )/(2) \cos(x) - ( √(2) )/(2) \sin(x) + ( √(2) )/(2) \cos(x) + ( √(2) )/(2) \sin(x) = √(2)

Simplify;


\cos(x) - \sin(x) + \cos(x) + \sin(x) = 2

Simplify;


\cos(x) + \cos(x) = 2

Add


2\cos(x) = 2

Divide by 2


\cos(x) = 1

Take cosine inverse;

In the


x = \cos^( - 1) ( 1) =0\degree

Also in the 3rd quadrant cosine ratio is positive.


x = 360-0= 360 \degree

User Nucleons
by
3.4k points