123k views
0 votes
What’s the difference please help

What’s the difference please help-example-1
User Juhyun
by
4.3k points

2 Answers

4 votes

Answer:

C:
-7ab \sqrt[3]{3ab^(2) }

Explanation:

Simplify or expand:


2ab\sqrt[3]{192ab^(2) } - 5\sqrt[3]{81a^(4) b^(5) }

Transform the expression:


2ab\sqrt[3]{4^(3)*3ab^(2) } -
5\sqrt[3]{3^(3)*3a*ab^(3) b^(2) }

Re-write

Multiply

Combine like terms.

User Gjeltema
by
4.8k points
3 votes

The simplified expression, written properly with square roots, is:
\[ -7ab \sqrt[3]{a \cdot b^2} \]

The original expression is:


\[ 2ab \sqrt[3]{192a \cdot b^2} - 5 \sqrt[3]{81a^4 \cdot b^5} \]

Now, rewrite the expressions inside the cube roots using prime factorization:


\[ 2ab \sqrt[3]{3 \cdot 4^3 \cdot a \cdot b^2} - 5 \sqrt[3]{3 \cdot 3^3 \cdot a^4 \cdot b^5} \]

Evaluate the cube roots:


\[ 2ab \cdot 4 \sqrt[3]{a \cdot b^2} - 5 \cdot 3ab \sqrt[3]{a \cdot b^2} \]

Evaluate the products:


\[ 8ab \sqrt[3]{a \cdot b^2} - 15ab \sqrt[3]{a \cdot b^2} \]

Combine the terms:


\[ -7ab \sqrt[3]{a \cdot b^2} \]

Therefore, the simplified expression, written properly with square roots, is:
\[ -7ab \sqrt[3]{a \cdot b^2} \]

User Inus C
by
4.6k points