9.7k views
5 votes
Multiplying Polynomials and Simplifying Expressions

Multiplying Polynomials and Simplifying Expressions-example-1
User Deuberger
by
8.2k points

1 Answer

2 votes

Given:

Polynomials:
a+3 \text { and }-2 a^(2)+15 a+6 b^(2)

To find:

The product of the polynomials.

Solution:


(a+3)(-2 a^(2)+15 a+6 b^(2))

Using distributive property:
x(y+z)=xy+xz


(a+3)(-2 a^(2)+15 a+6 b^(2))=a(-2 a^(2)+15 a+6 b^(2))+3(-2 a^(2)+15 a+6 b^(2))

Now multiply each of the first term with each of the second term.


=a\left(-2 a^(2)\right)+a \cdot 15 a+a \cdot 6 b^(2)+3\left(-2 a^(2)\right)+3 \cdot 15 a+3 \cdot 6 b^(2)

Applying plus minus rule:
+(-x)=-x


=-2 a^(2) \cdot a+15 a \cdot a+6 a\cdot b^(2)-3 \cdot 2 a^(2)+3 \cdot 15 a+3 \cdot 6 b^(2)

Apply the exponent rule:
x^(n) \cdot x^(m)=x^(n+m)


=-2 a^(3)+15 a^2+6 a b^(2)-6 a^(2)+45 a+18 b^(2)

Add or subtract the like terms:


=-2 a^(3)+15 a^2-6a^2+6 a b^(2)+45 a+18 b^(2)


=-2 a^(3)+9 a^(2)+6 a b^(2)+45 a+18 b^(2)

Arrange in the order.


=-2 a^(3)+9 a^(2)+45 a+6 a b^(2)+18 b^(2)

The product of
a+3 \text { and }-2 a^(2)+15 a+6 b^(2)
-2 a^(3)+9 a^(2)+45 a+6 a b^(2)+18 b^(2).

User GreenOwl
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories