Given:
Deposit (P) = £2000
Rate of interest (r) = 3%
Time (t)= 2 years
Number of time interest calculated per year (n) = 1
To find:
Amount in the account after 2 years
Solution:
Compound interest formula:
![$A=P\left(1+(r)/(n)\right)^(n t)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/crptrlfzl3yz1p773cq91ex5f3wqduohix.png)
Substitute the given values.
![$A=2000\left(1+(3\%)/(1)\right)^(1* 2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pz2f7v9ln24nandqj87172t00qikvcn1u1.png)
To convert percentage into fraction divide by 100.
![$A=2000\left(1+((3)/(100) )/(1)\right)^(1* 2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/inl27zvzrtbm2cqvekiqtf38hroi5995e6.png)
![$A=2000\left(1+(0.03 )/(1)\right)^( 2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5fb5v2ag19r3dmqbrfnqo173fxdhxgsfhx.png)
![$A=2000\left(1+0.03\right)^( 2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k597ztychfjmgpfg8miwtffm5fipobgrc8.png)
![$A=2000\left(1.03 }\right)^( 2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mfh4iraotmrl0e2nwpztmiad28y88httpy.png)
![$A=2121.8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vgu1dr0zsba0cnbeq3tcwd5ugv4ypm4zlz.png)
Therefore, £2121.8 will be in the account after 2 years.