49.0k views
3 votes
Which of the following is the solution to the differential equation dP/dt+P=10 with the initial condition P(0)=4

A. P= -1+sqrt20t+25
B. P=5-e^-t
C. P=10-6e^-t
D. P=10-6e^t

User Engel
by
7.4k points

1 Answer

0 votes

Answer:

  • Option C.
    P=10-6e^(-t)

Step-by-step explanation:

1. Separate variables:


(dP)/(dt)+P=10\\ \\ \\ \\(dP)/(dt)=-P+10\\ \\ \\ (dP)/(-P+10)=dt

2. Find the indefinite integrals


-ln((10-P))=t+C

3. Solve for P


10-P=e^(-t+C)\\ \\ 10-P=Ke^(-t)\\ \\ P=10-Ke^(-t)

4. Use the initial condition, P(0) = 4, to find K:

  • 4 = 10 - K(e⁰)
  • 4 = 10 - K
  • K = 10 - 4
  • K = 6

5. Substitute K = 6 into the integrated equation:


P=10-6e^(-t)

That is the option C.

User Kandie
by
8.1k points