Answer:
The angular velocity of the disk is
.
Step-by-step explanation:
Given:
The angular velocity of the solid disk,
![\omega_(0) = 0.067~rad/s](https://img.qammunity.org/2021/formulas/physics/college/ha7f36fkoc0jre9u10f4xbzbq4zngvshxa.png)
Moment of inertia of the disk,
![I_(0) = 0.10~Kg.m^(2)](https://img.qammunity.org/2021/formulas/physics/college/6mlhwma3leujyzjfrufk97h4m6db2vha7u.png)
The radius of the sand ring,
![r = 0.40~m](https://img.qammunity.org/2021/formulas/physics/college/xp2ri57avft125wi3haszby2sjgcq73fmz.png)
Mass of the sand disk,
.
From the conservation of angular momentum
![I\omega = I_(0)\omega_(0)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)](https://img.qammunity.org/2021/formulas/physics/college/dyesaqclw317ej33dzo0prbnckj6w6xd8j.png)
Here,
is the moment of inertia of the disk after the sand ring is formed and
is the new angular velocity.
The new moment of inertia of the disk and sand ring is given by
![I = I_(r) + I_(0)\\= Mr^(2) + I_(0)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2)](https://img.qammunity.org/2021/formulas/physics/college/ry9o2c93vo7xascxd8lpky8pe1ojuwh4xr.png)
Comparing equations (1) and (2), we have
![\omega = (I_(0)\omega_(0))/(Mr^(2) + I_(0))\\= ((0.10~Kg.m^(2))(0.067~ras/s))/((0.50~Kg)(0.40^(2)~m^(2)) + 0.10~Kg.m^(2)))\\= 0.037~rad/s](https://img.qammunity.org/2021/formulas/physics/college/tfdthyqddhtf67lltgu33ddpq2cno88n8v.png)