81.3k views
0 votes
1.

(02.01 MC)
Triangle STU is located at S (2, 1), T (2, 3), and U (0, −1). The triangle is then transformed using the rule (x−4, y+3) to form the image S'T'U'. What are the new coordinates of S', T', and U'? (10 points)

User Owenizedd
by
3.9k points

1 Answer

3 votes

Given that STU is a triangle located at S (2, 1), T (2, 3), and U (0, −1).

The triangle is then transformed using the rule
(x-4, y+3) to form the image S'T'U'.

We need to determine new coordinates of S', T', and U'

Coordinates of S':

The coordinates of S' can be determined by substituting the coordinate (2,1) in the transformation rule
(x-4, y+3)

Thus, we have;


S(x,y)\rightarrow (x-4, y+3)\rightarrow S'(x,y)

Substituting the coordinate (2,1), we get;


S(2,1)\rightarrow (2-4, 1+3)\rightarrow S'(-2,4)

Therefore, the coordinates of the point S' is (-2,4)

Coordinates of T':

The coordinates of T' can be determined by substituting the coordinate (2,3) in the transformation rule
(x-4, y+3)

Thus, we have;


T(x,y)\rightarrow (x-4, y+3)\rightarrow T'(x,y)

Substituting the coordinate (2,1), we get;


T(2,3)\rightarrow (2-4, 3+3)\rightarrow T'(-2,6)

Therefore, the coordinates of the point T' is (-2,6)

Coordinates of U':

The coordinates of U' can be determined by substituting the coordinate (0,-1) in the transformation rule
(x-4, y+3)

Thus, we have;


U(x,y)\rightarrow (x-4, y+3)\rightarrow U'(x,y)

Substituting the coordinate (2,1), we get;


U(0,-1)\rightarrow (0-4, -1+3)\rightarrow U'(-4,2)

Therefore, the coordinates of the point U' is (-4,2)

Hence, the coordinates of S'T'U' are (-2,4), (-2,6) and (-4,2)

User Rajan Balana
by
4.6k points