Answer:
Option d.
![sin(x)=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/aapks10aou4i26xzgh01eviosok16faoul.png)
Explanation:
The complete question is
Given (1+cosx)/(sinx) + (sinx)/(1+cosx) =4, find a numerical value of one trigonometric function of x.
a. tanx=2
b. sinx=2
c. tanx=1/2
d. sinx=1/2
we have
![(1+cos(x))/(sin(x))+(sin(x))/(1+cos(x))=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zz3zi5a4yixe17tu8elqk2nhqyr9tc59ii.png)
Find the common denominator and adds the fractions
![((1+cos(x))^2+sin^2(x))/((1+cos(x))sin(x))=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xy4wu1kdzizcgnfgbajqduw060g29aysag.png)
Expanded the numerator
![((1+2cos(x)+cos^2(x)+sin^2(x))/((1+cos(x))sin(x))=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/11esbi4uwyvnthntkghpofldwfizjywo61.png)
Remember that
----> trigonometric identity
substitute
![(1+2cos(x)+1)/((1+cos(x))sin(x))=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/11cchp2ulhrz7n8csfcedqoxfjzpq8zcis.png)
![(2+2cos(x))/((1+cos(x))sin(x))=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bbn3kflcv3poh3nfa7mbufu66mc1ez8myy.png)
Factor 2 in the numerator
![(2(1+cos(x)))/((1+cos(x))sin(x))=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q0ax22019xd73mju12s5j1wegunn1ffr1w.png)
Simplify
![(2)/(sin(x))=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/az5wqvyxpvzssv60blf75ygu2800bvwmpn.png)
![sin(x)=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/aapks10aou4i26xzgh01eviosok16faoul.png)