219k views
0 votes
Given 1+cosx\sinx+sinx\1+cosx=4, find a numerical value of one trigonometric function of x.

User Allan Xu
by
5.0k points

2 Answers

0 votes

Answer:

D

Explanation:

guy above

User Bosskovic
by
5.6k points
1 vote

Answer:

Option d.
sin(x)=(1)/(2)

Explanation:

The complete question is

Given (1+cosx)/(sinx) + (sinx)/(1+cosx) =4, find a numerical value of one trigonometric function of x.

a. tanx=2

b. sinx=2

c. tanx=1/2

d. sinx=1/2

we have


(1+cos(x))/(sin(x))+(sin(x))/(1+cos(x))=4

Find the common denominator and adds the fractions


((1+cos(x))^2+sin^2(x))/((1+cos(x))sin(x))=4

Expanded the numerator


((1+2cos(x)+cos^2(x)+sin^2(x))/((1+cos(x))sin(x))=4

Remember that


sin^2(x)+cos^2(x)=1 ----> trigonometric identity

substitute


(1+2cos(x)+1)/((1+cos(x))sin(x))=4


(2+2cos(x))/((1+cos(x))sin(x))=4

Factor 2 in the numerator


(2(1+cos(x)))/((1+cos(x))sin(x))=4

Simplify


(2)/(sin(x))=4


sin(x)=(1)/(2)

User Pablo Souza
by
5.6k points