Answer:
![2,882.5\ cm^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pskgn8p7t5vtbxh17cu6s7786u2wy95umc.png)
Explanation:
we know that
The approximate volume of the finished cylinder, is equal to subtract the volume of the hole from the volume of the original cylinder
so
![V=\pi r_1^(2)h-\pi r_2^(2)h](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jiy3wuzqa96elqqys7om5ikdtvqbt7178s.png)
![V=\pi h[r_1^(2)-r_2^(2)]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/21x0okimd05r4r1g3z0iyplnq85p8otn12.png)
where
r_1 is the radius of the original cylinder
r_2 is the radius of the hole
we have
---> the radius is half the diameter
---> the radius is half the diameter
![h=18\ cm](https://img.qammunity.org/2021/formulas/mathematics/middle-school/udhh8s94dt92lywe184xrsxw0umg8lwxzi.png)
![\pi=3.14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rl6dh8czfqdfue9fciig8t9lofe1lzq2pb.png)
substitute the given values in the formula
![V=(3.14)(18)[10^(2)-7^(2)]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5j4xmxvprh9nosqcmszjyyqzuo0w6b6hxq.png)
![V=56.52[51]\\V=2,882.5\ cm^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fcoin6l155slzuwy0axa0mzbc7mktkrrsp.png)