42.9k views
1 vote
Block D of the mechanism is confined to move within the slot of member CB. Link AD is rotating at a constant rate of ωAD = 6 rad/s measured counterclockwise. Suppose that a = 350 mm , b = 2001)Determine the angular velocity of member CB at the instant shown measured counterclockwise.

2)Determine the angular acceleration of member CB at the instant shown measured counterclockwise.

User CReaTuS
by
4.7k points

1 Answer

4 votes

Answer:

1) 1.71 rad/s

2) -6.22 rad/s²

Step-by-step explanation:

Choose point C to be the origin.

Using geometry, we can show that the coordinates of point A are:

(a cos 30°, a sin 30° − b)

Therefore, the coordinates of point D at time t are:

(a cos 30° − b sin(ωt), a sin 30° − b + b cos(ωt))

The angle formed by CB with the x-axis is therefore:

tan θ = (a sin 30° − b + b cos(ωt)) / (a cos 30° − b sin(ωt))

1) Taking the derivative with respect to time, we can find the angular velocity:

sec² θ dθ/dt = [(a cos 30° − b sin(ωt)) (-bω sin(ωt)) − (a sin 30° − b + b cos(ωt)) (-bω cos(ωt))] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω [(a cos 30° − b sin(ωt)) sin(ωt) − (a sin 30° − b + b cos(ωt)) cos(ωt)] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω [(a cos 30° sin(ωt) − b sin²(ωt)) − (a sin 30° cos(ωt) − b + b cos²(ωt))] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω (a cos 30° sin(ωt) − b sin²(ωt) − a sin 30° cos(ωt) + b − b cos²(ωt)) / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω (a cos 30° sin(ωt) − a sin 30° cos(ωt)) / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -abω (cos 30° sin(ωt) − sin 30° cos(ωt)) / (a cos 30° − b sin(ωt))²

We know at the moment shown, a = 350 mm, b = 200 mm, θ = 30°, ω = 6 rad/s, and t = 0 s.

sec² 30° dθ/dt = -(350) (200) (6) (cos 30° sin(0) − sin 30° cos(0)) / (350 cos 30° − 200 sin(0))²

sec² 30° dθ/dt = -(350) (200) (6) (-sin 30°) / (350 cos 30°)²

dθ/dt = (200) (6) (1/2) / 350

dθ/dt = 600 / 350

dθ/dt = 1.71 rad/s

2) Taking the second derivative of θ with respect to time, we can find the angular acceleration.

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω [(a cos 30° − b sin(ωt))² (ω cos 30° cos(ωt) + ω sin 30° sin(ωt)) − (cos 30° sin(ωt) − sin 30° cos(ωt)) (2 (a cos 30° − b sin(ωt)) (-bω cos(ωt)))] / (a cos 30° − b sin(ωt))⁴

At t = 0:

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω [(a cos 30°)² (ω cos 30°) − (0 − sin 30°) (2 (a cos 30°) (-bω))] / (a cos 30°)⁴

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω (a²ω cos³ 30° − 2abω sin 30° cos 30°) / (a⁴ cos⁴ 30°)

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -bω (aω cos² 30° − 2bω sin 30°) / (a² cos³ 30°)

d²θ/dt² + 2 tan θ dθ/dt = -bω² (a cos² 30° − b) / (a² cos 30°)

Plugging in values:

d²θ/dt² + 2 tan 30° dθ/dt = -(200) (6)² (350 cos² 30° − 200) / (350² cos 30°)

d²θ/dt² + 2 tan 30° dθ/dt = -7200 (262.5 − 200) / (350² cos 30°)

d²θ/dt² + 2 tan 30° (1.71) = -4.24

d²θ/dt² = -6.22 rad/s²

Block D of the mechanism is confined to move within the slot of member CB. Link AD-example-1
User Lasse
by
4.8k points