Answer:
![\[(y^(12))/(8 * x^(18))\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5de3kxuyv0fe9530lel851nnvh1r0uftlo.png)
Explanation:
Given expression is
![\[(2x^(6)/y^(4))^(-3)\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sjww6oxtolqwcdgu8bbuioenvjid5nn2ao.png)
In order to simplify the expression, we need to evaluate the numerator and denominator values when a power of -3 is applied to them individually.
Computing the numerator:
![\[(2x^(6))^(-3)\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x2zr090pmac1licrjfdsxawsa6dkrewwxa.png)
![\[=(2^(-3) * x^(6*(-3)))\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ffcsydorqefd9ux2cirityzsnttbnybv74.png)
![\[=((1)/(2^(3)) * x^(-18))\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/puv9clbgw13dsf9o4epbqskhbve7vflevt.png)
Similarly the denominator:
![\[(y^(4))^(-3)\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mvwx3sfkymsjg09930ddx97qy0lvn7c93s.png)
![\[=y^(4*(-3))\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bp2p2qu0ur3efaqyjnlhw8xeqg1gnokieo.png)
![\[=y^(-12)\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h06tlg2qri1y1oploeg2w9wqxgcsufofr6.png)
So the overall simplified expression is:
![\[(((1)/(2^(3)) * x^(-18)))/(y^(-12))\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/spyuuhw7ankjzybrdqbutnbn2dyxhfdsiu.png)
![\[=(y^(12))/(8 * x^(18))\]](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jgyag7kyepdbu6o9iqmepnb8fdwwzcb9wt.png)