252,638 views
36 votes
36 votes
Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {(a, b): b = a + 1} is reflexive, symmetric or transitive.


User Itwarilal
by
2.5k points

1 Answer

27 votes
27 votes

Answer:

The answer is R is neither reflexive, nor symmetric, nor

transitive.

Explanation:

Let A = {1, 2, 3, 4, 5, 6}.

A relation R is defined on set A as:

R = {(a, b): b = a + 1}

R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

We can find (a, a) ∉ R, where a ∈ A.

For instance,

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) ∉ R

R is not reflexive.

It can be observed that (1, 2) ∈ R, but (2, 1) ∉ R.

R is not symmetric.

Now, (1, 2), (2, 3) ∈ R

But, (1, 3) ∉ R

R is not transitive

Thus, R is neither reflexive, nor symmetric, nor transitive.

User Sherma
by
3.0k points