Answer:
(a) The probability that the members of the committee are chosen from all nationalities
=0.1212.
(b)The probability that all nationalities except Italian are represent is 0.04848.
Explanation:
Hypergeometric Distribution:
Let
,
,
and
be four given positive integers and let
.
A random variable X is said to have hypergeometric distribution with parameter
,
,
,
and n.
The probability mass function
![f(x_1,x_2.x_3,x_4;a_1,a_2,a_3,a_4;N,n)=\frac{\left(\begin{array}{c}x_1\\a_1\end{array}\right)\left(\begin{array}{c}x_2\\a_2\end{array}\right) \left(\begin{array}{c}x_3\\a_3\end{array}\right) \left(\begin{array}{c}x_4\\a_4\end{array}\right) }{\left(\begin{array}{c}N\\n\end{array}\right) }](https://img.qammunity.org/2021/formulas/mathematics/college/7npaosnw0bu6ftawjpsepf2lsh0uwl3l24.png)
Here
![a_1+a_2+a_3+a_4=n](https://img.qammunity.org/2021/formulas/mathematics/college/ix47i68o65poqauybc246q8qk4xamuze9c.png)
![{\left(\begin{array}{c}x_1\\a_1\end{array}\right)=^(x_1)C_(a_1)= (x_1!)/(a_1!(x_1-a_1)!)](https://img.qammunity.org/2021/formulas/mathematics/college/jg93h6e036xeh3evjehnkywfta6e61hjip.png)
Given that, a foreign club is made of 2 Canadian members, 3 Japanese members, 5 Italian members and 2 Germans members.
=2,
=3,
=5 and
=2.
A committee is made of 4 member.
N=4
(a)
We need to find out the probability that the members of the committee are chosen from all nationalities.
=1,
=1,
=1 ,
=1, n=4
The required probability is
![=\frac{\left(\begin{array}{c}2\\1\end{array}\right)\left(\begin{array}{c}3\\1\end{array}\right) \left(\begin{array}{c}5\\1\end{array}\right) \left(\begin{array}{c}2\\1\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }](https://img.qammunity.org/2021/formulas/mathematics/college/mujjks402tjd7hjht2646kugx5s3l9db9o.png)
![=(2* 3* 5* 2)/(495)](https://img.qammunity.org/2021/formulas/mathematics/college/n56brdiyoz040dcyx2vod84wpaleeuux0u.png)
![=(4)/(33)](https://img.qammunity.org/2021/formulas/mathematics/college/fv7qe45m1d7oeql3qi3xn38lf2ge2bn62f.png)
=0.1212
(b)
Now we find out the probability that all nationalities except Italian.
So, we need to find out,
![P(a_1=2,a_2=1,a_3=0,a_4=1)+P(a_1=1,a_2=2,a_3=0,a_4=1)+P(a_1=1,a_2=1,a_3=0,a_4=2)](https://img.qammunity.org/2021/formulas/mathematics/college/jto1acytk1m4u3n0xzn4fezv4bk30ft5kd.png)
![=\frac{\left(\begin{array}{c}2\\2\end{array}\right)\left(\begin{array}{c}3\\1\end{array}\right) \left(\begin{array}{c}5\\0\end{array}\right) \left(\begin{array}{c}2\\1\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }+\frac{\left(\begin{array}{c}2\\1\end{array}\right)\left(\begin{array}{c}3\\2\end{array}\right) \left(\begin{array}{c}5\\0\end{array}\right) \left(\begin{array}{c}2\\1\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }](https://img.qammunity.org/2021/formulas/mathematics/college/bg6pbkyde75le4csxhw9r1j14skjdulg06.png)
![+\frac{\left(\begin{array}{c}2\\1\end{array}\right)\left(\begin{array}{c}3\\1\end{array}\right) \left(\begin{array}{c}5\\0\end{array}\right) \left(\begin{array}{c}2\\2\end{array}\right) }{\left(\begin{array}{c}12\\4\end{array}\right) }](https://img.qammunity.org/2021/formulas/mathematics/college/8ms58usltlnt6v4asl5r65gl48kn7dip6y.png)
![=(1* 3* 1* 2)/(495)+(2* 3* 1* 2)/(495)+(2* 3* 1* 1)/(495)](https://img.qammunity.org/2021/formulas/mathematics/college/22g82fnkb65viet24c2g5hicelricq9g3m.png)
![=(6+12+6)/(495)](https://img.qammunity.org/2021/formulas/mathematics/college/gs97ld1x1gznjvwkzfe2m0jvwdksnlstfj.png)
![=(8)/(165)](https://img.qammunity.org/2021/formulas/mathematics/college/fvy7y9kdqs6cu26zi6miby5h9c0se02yix.png)
=0.04848
The probability that all nationalities except Italian are represent is 0.04848.